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Introduction and Motivations

ess. Cambridge

ery- J. Polit. Econ. Agricultural ecology is a topic which could take the entire period of time available

74175 % for the Course in Mathematical Ecology offered at the ICTP. For that reason,
ialist and generalist % one must carefully select topics in the lectures. The topics chosen for these lectures
:

are motivated by questions concerning agricultural productivity in developing
countries. Productivity is often hampered by pest insects, which may cause
enormous crop losses during outbreaks. There is considerable need for predicting
where and when outbreaks are likely to be severe and to be able to implement
management strategies that are effective but not excessively costly. These sentiments
are echoed in the United Nations Africa Relief Program, as reported in the New
York Times on 2 June 1986. The UN General Assembly adopted an agreement
on African recovery that included the following points concerned with agricultural
development:

iry with irreversible
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The immediate objective will be to cope with future emergencies and catastrophes
through the following measures:

—To create and sustain national emergency preparedness;

from Applied Mathematical Ecology
(S.A. Levin, T.G. Hallam, and L.J. Gross,
editors). Springer-Verlag, Berlin 1989
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still used. Thus, we should think of operations research as the scientific method
applied to operational problems.

As part of their work, Morse and his colleagues developed what they came to
call “hemibel thinking”. A hemibel is the logarithm of 3 and the general objective
of hemibel thinking is to look for big improvements through the introduction of

analysis into an operational problem. Morse and Kimball (1946, p.38) describe
hemibel thinking as follows:

It is well to emphasize that these constants which measure the operation are useful even though they
are extremely approximate; it might almost be said that they are more valuable because they are very
approximate. This is because the successful application of operations research usually results in
improvements in factors of 3 or 10 or more. Many operations are ineffectively compared to their
theoretical optimum because of a single faulty component... when the “bottleneck”™ has been discovered
and removed, the improvements in effectiveness are measured in hundreds or even thousands of per cent.
In our first study of any operation we are looking for these large factors of possible improvement.
They can be discovered if the constants of the operation are given only to one significant figure, and
any greater accuracy simply adds unessential detail. .. Having obtained the constants of the operation
under study in units of hemibels (or to one significant figure), we take our next step by comparing
these constants. We first compare the value of the constants obtained in actual operations with the
optimum theoretical value, if this can be computed. If the actual value is within a hemibel (i.e., within
a factor of 3) of the theoretical value, then it is extremely unlikely that any improvement in the details
of the operation will result in significant improvement. In the usual case, however, there is a wide gap
between the actual and theoretical results. In these cases a hint as to the possible means of improvement
can usually be obtained by a crude sorting of the operational data... In many cases a theoretical study
of the optimum values of the constants will indicate possibilities of improvement.

Rephrased for the agricultural pest control problem, this quotation takes the
following form. We are not particularly interested in describing the crop-pest
interaction in excruciating detail. Instead, the objective is to identify the key
processes and major strategies that will quickly improve yield. Rather than
fine-tuning models, we are looking for large differences between theory and data,
using the analysis to show how to increase the chance of success in the battle
against agricultural pests.

The principles of hemibel thinking are as valid today as they were 40 years
ago. Scientists who are aiding decision makers involved in problems of agricultural
ecology should keep the hemibel principle in mind when developing models. It is
worth noting, too, that hemibel thinking is at odds with much of the current
philosophy concerning Integrated Pest Management (IPM). Models in the current
IPM approaches are typically highly detailed computer models, in which insight
concerning interactions can be obtained only after intensive computational expense.
It is always helpful to try a simple model before developing such a complex model.
In addition, the cost of such detailed models may be prohibitive in developing
nations.

In the majority of pest problems, we gather information not for its own sake,
but to decide if an action such as some kind of pest control should be taken.
Determining the threshold for this action, particularly when there is uncertainty
associated with the decision, is not an easy job. Plant (1986) gives a good discussion
of uncertainty and the economic threshold for action in pest management problems.
In general, in these lectures it will be assumed that the threshold for action has
already been determined. The importance of proper government policy as a means
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of 'éwoidin'g disasters (see, e.g. the recent article on famine by Mellor and Gavian,
1987) can not be overstressed. Clark’s lectures in this volume provide an example
of how proper policy can be developed. Information transfer between the scientist
and policy-maker is crucial, if scientific principles are going to be used in setting
policy. It is essentially impossible to take too much care in insuring the effective
transfer of scientific information..

Although it is very tempting to do so, one should not work on applied questions
without a particular agricultural system and pest in mind, Most of the material
presented in this chapter is concerned with methodology and the development of
analytical tools, so that it will often appear that the problems are completely
abstract ones. My own experience in problems of agricultural ecology comes from
work on fruit flies of economic importance, such as the Mediterranean fruit fly or

the apple maggot, and control of pests of cotton, particularly spider mites and
lygus bug.

Modelling Pest Distributions

When considering a pest problem, the first thing that we need to know is the
distribution and density of the damaging insect. To address these questions,
consider a large region, of the order of perhaps hundreds of square kilometers,
that is divided into cells and let A;denote the area of the ith cell. The cells themselves
might be of the order of square kilometers. For example, in California there are
currently traps placed throughout the state for fruit flies of economic importance
at a density of about one trap every 2.5km?. Let N,(t) denote the number of pests
in cell i at the start of period ¢ (if a discrete time formulation is used) or at time ¢
(if a continuous time formulation is used). We are interested in the probability
distribution of the vector N(f) = {Ni(1)}. This is defined by

pi(n, ) = Prob {N,(t) = n}. )
Perhaps the simplest model is the Poisson distribution
Pi(n, 1) = exp (— A1) 4;)(A(t) A,)"/n! )

where A(t) is a parameter. The single parameter 1 completely specifies the probability
distribution, so that once it is known the entire distribution is known. The Poisson
distribution has a very nice infinitesimal interpretation (which can also be used to
derive Eq. (2)). Consider a small region Aa <« A, where A denotes the area of a
typical cell. Then Eq. (2) is equivalent to

Prob {no pest in Aa} =1 — A()Aa + o(4a)

Prob {one pest in Aa} = A(t)4a + o(4a)

Prob {more than one pest in Aa} = o(Aq) (3
where o(z) represents terms such that o(z)/z approaches 0 as z approaches 0. The

parameter A(t) in the Poisson distribution can thus be interpreted as a proportionality
constant relating the probability that a small region contains a pest and the size
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definition of conditional probability and Bayes’s formula is required. Suppose that
o/ and & are two possible outcomes of a probabilistic process. The conditional
probability of o/ given that # has occurred is then defined by

Prob{.«/|%} = Prob{«/, #}/Prob{ A} . (6)

In this equation, Prob { &/, #} is the probability that both events occur and it is
implicitly assumed that the probability that the event & occurs is greater than .
Rearranging Eq. (6) leads to

Prob {</, 8} = Prob {«/| %} Prob {#} (7

and then noting that the roles of &/ and % can be interchanged in these equations
leads to Bayes’s theorem

Prob{#|«/ } = Prob{«/|#} Prob{%}/Prob{} . 8

Eq. (8) will turn out to be extremely important when we consider the analysis of
information in pest control problems.

Suppose now that the parameter 4 has a density function f(4) so that f(1)dA is
the probability that A < 4 <A+ dA. The probability that N,() takes a particular

value n is then found combining the conditional Poisson distribution with the
density of 4 so that

piln, 1) = [exp(— ADANHO AY/nt] S (A . ©)

In order to easily implement Eq. (9), we want to choose a density f(4) that will
easily integrate against the Poisson distribution. An appropriate density will be
described momentarily. Before doing that it is worthwhile to briefly consider a
sampling problem, in order to show how the framework developed thus far
can be employed to obtain useful information about pest populations.

Suppose that an insect is distributed according to the Poisson distribution, but
that the value of the Poisson parameter A is unknown. In order to learn about
the value of the parameter, we assume that cells are sampled and that the insect
counts obtained through sampling are used to make inferences about the Poisson
parameter. In particular, assume that in the ith cell 2 has density f(4) and that
when this cell is sampled, the number of insects discovered equals to n. (Assume
for the time being that this sample information is perfect; it will be seen that this
assumption is not crucial to the following argument.) We wish to compute the
posterior (ie., after sampling) density for 4, given the data that n pests were

discovered in the sample. Let f(4{n) denote this density. Use of Bayes’s theorem
shows that

SAIn)dAi = Pr{A< A< A+ dAIN(t)=n)
=Pr{A< A< A+dA, Ni(t)=n}/Pr{Nt)=n}
= f(A)[exp(—AA)(AAY'/n']/| f (D) [exp(— AA)AA)"/n!]dA . (10)

Although it somewhat abuses notation, it is very helpful to adopt the convention
that A~ 4 for the more exact relationship 1< A4 <A+dA. This will be done
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throughout the rest of the Chapter. From the viewpoint of implementation of these
formulas, we should pick a density f(4) that will allow the integrals to be done
easily. The density that is chosen is defined on [0, o0) for the range of values of
the parameter. One choice for the density is the gamma density with parameters
v and a. This density will be denoted by f(4;v,a) and is

f&sv, ) =exp(—ad)A* " e/ (v). (11)

In this equation, I"(v) is the gamma function. For biologists who are not familiar
with it, you can think of the gamma function in the same way that one thinks
about the functions sin (x) or log (x). That is, the gamma function has one or more
definitions, arises in particular situations, and has certain computational properties.
The gamma function is defined by

Iy = aj'oexp( — " dr . (12)
0

From the definition, we can show that the following recursion relationship holds
{try it as an exercise!)

rFv+1)=vIy (13)

so that for integer values of its argument, I"(v + 1) = v!. For values of the argument
less than 1, Abramowitz and Stegun (1964) give an extremely accurate formula
(page 256, paragraph 6.1.34). For values of the argument greater than 1, use Eq.
(13) and the formula in Abramowitz and Stegun (which, by the way, is a book well
worth owning!).

The information that f(4;v,a) is a probability density provides an easy guide
to doing what appear to be complicated integrals. That is, since a probability
density must integrate to 1, one can integrate Eq. (11) over [0, o) and multiply
by the appropriate constants to show that

fexp(—ad)i*~1dA= I ()’ . (14)

The mean and variance of A can be found by directly applying Eq. (14). Using this
equation gives

E{i}=v/a
E{A%} = (v/a)? + (v/a?) (15)

from which it follows that the variance of 4 is v/«® and the coefficient of variation

isCV{i}=1/ \/; Note that the coefficient of variation approaches 0 as v increases.
Also, note that the mean of the distribution is constant when v/a is constant, so
that one can hold the mean constant while varying the shape through changes in
v. Finally, note that the density peaks at A* = (v — 1)/a, a value less than the mean.
The reader is encouraged to verify all of these statements by sketching the shape
of the gamma density for a few values of the parameters. If that’s done, one can
see the robustness of the distribution in terms of different shapes.
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Jlexp(—ad)i*~o*/I (v)] [exp(—AA4)(AA)"/n1]d
=exp(—(a+ A" Ya+ Ay /I (n + v)
=f(Alv+na+ A). (16)

This equation is an example of an updating rule: we begin with a prior idea about
the distribution of the parameter, obtain information, and update the idea
about the distribution of the parameter to obtain a posterior distribution. In this case,
the prior idea is that A follows a gamma distribution with parameters v and o, the
information is that n pests were in area A, and the posterior distribution of the
parameter is a gamma distribution with parameters v+ n and o + 4. Note that
as long as some “positive” information is obtained, in the sense that n > 0, there
is a reduction in uncertainty since the coefficient of variation of the posterior
distribution (1/./(n+v)) is less than the coefficient of variation of the prior
distribution (1,/v).

The main justification for choosing a gamma prior is that it works: we start
with a gamma prior, use Poisson sampling, and end with another gamma
distribution. Thus, we only need to keep track of the parameters of the distribution,
rather than the distribution itself. Statisticians call the gamma a conjugate prior
for the Poisson distribution (see, e.g. Berger, 1980 or DeGroot 1970 for a fuller
discussion of Bayesian decision theory). There is a small “biological” story for the
choice of a gamma prior: Suppose that the parameter of the Poisson distribution

is proportional to the number B(z) of pests and that the number satisfies a stochastic
differential equation (SDE) of the form

dB = B[r(1 — B/K)dt + adW]

where r,K and o are parameters and dW is the increment in Brownian motion
(see the Chapter by Riccardi, in vol. 17 of this series). Then the equilibrium
distribution, defined as the lim, . , B(t), is often a gamma distribution, This kind

of model would suggest that a gamma prior for the Poisson parameter is a
reasonable choice.

The denominator in Eq. (16) is the probability that n pests are present in the
region with area A. Doing the integrals and a little bit of algebra leads to the result

Pr{n pests present in region of area A} = p(n, A)
(v + m/n! T())(A/ (o« + A))*(/(oe + A)) . (17)

This is the negative binomial (NB) distribution. It is computed using an algorithm
similar to the one given for the Poisson distribution. That is, first set

p(0, 4) = (a/(a + A))”
and then use the iteration formula obtained directly from the definition in Eq. (17)

P+ 1, A)=((v + n)/(n + 1))(4/( + A))p(n, A) . (18)
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IfN has a .NB distribution given by Eq. (17), then the mean and variance of N are
E{N}=(vo)A=m
Var {N} = (v/&) A + v(A/a)?
=m+m?y. (19)

The parameter v, which is often denoted by k in the ecological literature, can thus
be interpreted as an “over-dispersion” parameter in the following sense: When v
is large, the mean and variance of the NB distribution are approximately equal
so that NB distribution is essentially a Poisson distribution. (The more mathe-
matically inclined reader may wish to consider the behavior of the gamma density
when v— 0 and v/x is held constant.) When v is small, on the other hand, the
variance of the NB distribution can be much larger than the mean. Because
ecological data often involve variances that far exceed means, the NB distribution

has enjoyed immense popularity in ecology. It is not without its problems, however,
and some of these are discussed below.

From Eq. (19), the coefficient of N is given by
CV{N} = ((1/m) + (1/))° . . (20)

This equation should be compared to Eq. (5). Since the mean of the NB distribution
is proportional to the area A, as the sampled area increases, the mean m approaches
o0 and the coefficient of variation approaches a limit v=°3 which is non-zero
and may be large when v is small. Thus, whereas for the Poisson distribution there
was no limit on the relative accuracy of the sampling, for the NB distribution
there is an inherent limit, determined by the over-dispersion parameter.

If Eq. (18) is rewritten in terms of m and k, a little bit of algebra shows that

p(n, A) = p(n; m, k)
=[I(k+ n)/n! k)] (m/(k + m))*(k/(k + m))* . (21)

The p(n;m, k) form will be used in the rest of this chapter. A remarkable feature
of the NB distribution is the preponderance of zeroes when k is small. From Eq.(21),

p(0;m, k) =Pr{N =0 when m and k are the parameters of the distribution}
= (k/(k + m))* (22)

and this probability may be considerable, even if m is immense, if k is sufficiently
small. For example, if k = .09 we obtain the following results:

log (m) Pr{N =0}
0 0.799
1 0.734
2 0.672
3 0.614
4 0.562
5 0.513




AL - s P

i
H
i
!
!

=90

The irfterpretétion of these numbers is the following: If N has a NB distribution

o

with parameters m = e and k = 0.09 then the probability that a particular region
may have 0 pests is slightly larger than 1/2, even though the mean of the distribution
is about 150! This kind of behavior is highly desirable when modelling pest insects,
because pests are often totally absent from most regions (thus giving many zeroes)
yet are abundant “on the average” because of a few highly intense, localized
outbreaks.

Estimation of the parameters m and k is important in any applied problem. It
is easy to show that if we have collected a data set and m and s? are the sample
mean and variance, then m is the maximum likelihood estimate (MLE) for the
mean of the NB distribution. Estimation of k is a little bit trickier. Kendall and
Stuart (1979, page 78) show how MLE estimates for k can be determined. Two
simple methods, which may be sufficient in many applied problems, are the
following. We can simply use the moments of the empirical distribution and match

them to the moments of the NB distribution. Thus, set m =m and, in light of Eq.
(19), set

k=m?/(s® — m) (23)
48 -~ 4
[ ]
*
®
40 - ¢
o
00 e® 0o
)
32 " oSS
. 9‘. EH®o ®
Bao®
®
° [ ]
8 24 30038 o o
3 g o °
= OmC:
L) (o)
> 16 AN
o ¢ o ¢
o Oe
- 0C e ®
08 - "gss‘;
[)
o o/ o
o 7 o
4 ° & o
0.0 o
O,
°.00 Fig. 1. P. Bakers data on
-0.8 A medfly (Ceratitis capitata
Wied) trapping. Open cir-
cles are Jackson traps, closed
| : - circles are delta traps

T
-1.6 -0.8 C0o 08 1.6 2.4
Log Mean Trap Catch

Informatioh anc

100

"
80
70 A
60

50 -+

Variance

40 -
30 -
20 -

10 A

gy

as long as th
allowed but r

log [Var {
so that for ve

log [Var {

where o(z) re
the logarithmr
will lead to a

An examg
might be use
(1985) who w
the trap catcl
as the mean

Other Mod:

The NB is on
populations.
the ease witl



. -Mar¢ Mangel -

If N has a NB distribution

lity that a particular region
the mean of the distribution
vhen modelling pest insects,
‘s (thus giving many zeroes)
~ highly intense, localized

in any applied problem. It
d m and s’ are the sample
d estimate (MLE) for the
e bit trickier. Kendall and
< can be determined. Two
'pplied problems, are the
cal distribution and match
M =m and, in light of Eq.

(23)

Fig. 1. P. Baker's data on
medfly (Ceratitis capitata
Wied) trapping. Open cir-
cles are Jackson traps, closed
circles are delta traps

I T TN

e A AR S i A e A

l 2 3 4 5 6 7 8 9
Mean Trap Catch

Qo lee
Informatfor- and"Area-Wide Control in A ricultural Ecology™. ~-~= 91
o2 & oy 3T,
. $
100 na 32|5
[e]
90 -
80 +
[o]
L]
70 A ;
o 607 '
g o
,g 50 - ° o
W [ ]
> 40+ .
Ce
30 A i
LI °
8 L]
20 + o ¢
8 o]
[e] [e] L ° L
10 4 8 » Fig. 2. P. Baker's data for small
8.0 °.° values of mean trap catch. Every-
s 5 o ° thing else is the same as in Fig. 1

as long as this equation makes sense (negative values of k, for example, are not
allowed but may occur). Another approach is to rewrite the variance of N as

log [Var {N}]=1log [(m*/k)(1 + (k/m))] (24)
so that for values of k/m « 1| one obtains

log[Var {N}] =log(m?/k) + log(1 + (k/m))
= 2log (m) — log (k) + o(k/m) 25)

where o(z) represents a term such that 0(z)/z goes to 0 as z goes to 0. A plot of
the logarithm of the variance against the logarithm of the mean of the distribution
will lead to an estimate of k from Eq. (25).

An example of how actual pest count data appear, and how the NB distribution
might be used is shown in Figures 1 and 2, using data collected by Peter Baker
(1985) who was trapping fruit flies in Mexico. These figures show the variance of
the trap catch as a function of the mean, We clearly see an increase in the variance
as the mean increases; use of a simple NB model gives a value of k ~ 2.

Other Models for Aggregated Distributions

The NB is only one of a family of distributions that can be used to model aggregated
Populations. It is sometimes misused, perhaps because simple over-enthusiasm and
the ease with which it can be applied. A number of authors (e.g. Taylor et al. 1979
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or Perry and Taylor 1986) have chastened individuals who use the NB distribution
too glibly. In particular, the value of k often depends upon the mean. Taylor et
al. (1979) and Perry and Taylor (1986) suggest that k is a function k(m) of the mean,
given by

k(m) = m/[amP~1 — 1]

where a and b are parameters. Perry (1981) discusses parameter estimation for this
relationship (The motivation for this choice of functional form, and the interpretation
of the parameters will be discussed below.) Another problem with the NB
distrjbution is that the value of k may depend upon the sampling scale and structure
of the population, so that blind use of the NB (or any other distribution!) could
lead to silly results. For example, the reader may wish to consider a problem with
about 50-100 cells in which N, = i# where B is a parameter (e.g. try § =0.5, 1, 1.5).
Simply computing the mean and variance leads to a picture of considerable
overdispersion, but it is not random overdispersion at all. Rather, there is a clear
pattern to the data. Further discussion of this point is given by Debouzie and
Thioulouse (1986). The essential point, however, is to use the NB distribution
thoughtfully and to be aware that there are a number of other models that can
be used with equal facility as the NB, especially with the accessibility and easy use
of modern, desktop computers.

Some of these alternate models will now be discussed. They are all comput-
ationally more complicated than the NB distribution. None of them, however, is
so complex that it can not be used with a small, desktop microcomputer. Rapid
advances in computer technology are likely to make it even easier to use these
distributions.

The Neyman Type-A distribution is obtained by compounding one Poisson

distribution with another. If N follows a Neyman type 4 with parameters A and
0 then

Pr{N=n}= i [exp (— 4) 24/j!1 [exp( — jO)(j6)"/n!] . (26)
The probability of a 0 in this model is

Pr{N =0} =exp[—A(l —e %] @7
and the mean and variance of N are

E{N}=16

Var {N} = 16(1 + ) (28)

so that it is clear that we can, by appropriate choice of the parameters, make the
variance greatly exceed the mean.

A second class of contagious models are urn models. For pest control problems,
they can be phrased as models involving an “occupancy approach”. The typical
urn problem would be phased as follows. We start with a mixture of “white” balls
and “black” balls. Let W(z) and B(t) denote the number of white and black balls
after ¢ “drawings” or “samplings”. The sampling rules are the following:

1. A single ball is removed. This is the sample.
2. One adds « + 1 balls of the same color and § balls of the opposite color.
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Although this is apparently a simple problem, its analysis is actually quite
difficult. Feller (1968) provides a good introduction to urn problems. The paper
by Bernard Friedman (Friedman 1948) is a gem of applied mathematics and still
well worth reading. Two properties of urn models of special note are:

1. For the simple urn model just formulated, initial fluctuations drive the
final outcome. That is, if one considers the proportion of white balls p(t)= Wy
(W(t) + B(t)) as t increases, the distribution of p(f) approaches a uniform
distribution on [0,1]. The behavior of a particular sample path is virtually
completely determined by the first 10 or 20 samplings (subject to the values of
a and B, of course). There is thus no “equilibrium” in the sense that all points
in the (W, B) phase space are ultimately attracted to the same point.

2. A special case of the general urn problem is the Polya urn, in which = 0.
Under appropriate conditions, the Polya urn has a NB limiting distribution.
This limit applies to the situation in which

W(0)/(W(0) + B(0))—0
(o + DAW(0) + B(0))-0
and the number of samples T— co in such a way that
TW(O)/(W(0)+ B(0))—»6+0
T(ox+ 1)/(W(0) + B0))—»p #0 .

Under these conditions, the limiting distribution of the Polya urn is negative
binomial (see Johnson and Kotz 1969 for further discussion).

The limiting distribution actually has a nice biological interpretation for the
development of aggregation. As an example, consider how an aggregated distribution
of insect eggs might arise. Suppose that as insects incounter possible habitats for
their eggs they follow the rule of sampling a small volume of the habitat and, if
they discover other eggs, adding some of their own eggs to those already present.
(The basic idea here is that if other eggs are present, a previous female has decided
that this is an acceptable habitat.) With the exception of having to add a description
of the first insect that lays its eggs in the habitat, the description just given follows
the spirit of a Polya urn model.

A third, and quite general model, for aggregation is known as Taylor’s power
law. 1t arises out of the statistical analysis of the relationship between the mean
and variance of pest sampling data. If m and s? denote the sample mean and
variance, we fit a relationship of the form (see Taylor et al. 1979 for more
details)

s? = am® (29)

where a and b are parameters. These parameters are then used with a particular
probability distribution. For example, if the pest distribution follows a NB model,
then the mean and variance are related by the formula Variance =m + (m?/k).
Using equation (29) gives a method for finding a functional form for the
overdispersion parameter k as a function of the mean. This is the equation given
previously.
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Pest Growth and Movement

The picture established thus far is a large region, divided into cells with N,(t)
denoting the number of pests in cell i at the start of period ¢. In the absence of
any control actions, the values of {N,(t + 1)} will be determined by growth and
movement of the pest populations. These are both complicated processes and each
has been modelled in several different ways (see, e.g. Hargrove 1981, Minogue and
Fry 1983, Rogers 1979, Sawyer and Haynes 1985, 1986 or Taylor 1986). The
purpose of this section is simply to state the assumptions that will be used in the
next two or three sections on trapping and control.

In most applied problems, we want to be able to detect and control the pests
at a relatively low population level, so that density dependent effects can be i gnored.
This leads to mathematically simple relationships (which are thus somewhat
uninteresting to mathematicians!), simplifies much of the further analysis, and
makes parameter estimation easier. Thus, in the absence of any movement, we
might assume that

Ni(t + 1) =ri(t)N;(t) . (30)

where r;() is the growth rate for the pest population in cell i during period z. We
could easily incorporate more complicated growth models, with density dependence,
if there is evidence for their need.

Movement is a little bit trickier to characterize. Small scale or local movements
of the pest can often be effectively described by some kind of random walk or
diffusion model (see, e.g. Broadbent and Kendall 1953, Gillis 1956 for “classic”
work or Kareiva and Shigesada 1983, Root and Kareiva 1984 or Sawyer and
Haynes 1985, 1986 for more recent work). Sometimes large scale motion can also
be modelled using diffusion models. Although random walk models provide nice
qualitative pictures for insect movements, there are even some difficulties with
these models as descriptions of short scale movement. For example, Kareiva and
Shigesada (1983) show that the actual movement of butterflies is wider ranging
than the movement predicted by a random walk model. That is, the actual
movement is more diffuse than the random walk.

In agricultural pest control problems, we are more likely to be interested in
large scale movements of pests. Large scale movements are often driven by factors
such as wind or the movements of animals and people that carry the pest
(intentionally or not). In this case, wind patterns and roadway maps may provide
the best information about the movement of pests. There is a paucity of data on
the large scale movements of pests of interest in agricultural problems. Taylor
(1986) provides one of the best descriptions of large scale movement. In general,
however, we must tailor the movement model to the problem of interest.

Trapping and Information

In this section, a variety of trapping models are developed for the analysis of
trapping for information, rather than control. (Also see Janesen and Metz, 1979;
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Mangel, 1985, 1986; Mangel et al., 1984; McClendon et al., 1976; Metz et al., 1983,
and Plant and Wilson, 1985).

As a motivation for the development of mathematical models, it is worthwhile
to consider the experiments of Cunningham and Couey (1986) in which large
numbers of marked Mediterranean fruit flies were released at differing distances
from a single trap in an orchard. The proportion of flies released r feet from the
trap and captured by the trap was measured. Cunningham and Couey found an
almost perfect fit of their data to the formula

q(r,t) = A(t)exp (— B(1)r) (31

where g(r, 1) is the proportion of flies released r feet from the trap and captured
by time ¢, and A(¢) and B(t) are parameters. Cunningham and Couey found that
A(24 hrs) = 0.6527, B(24 hrs)=8.637 x 10™3 and that A(o0)= 0.6970_, B(o0) =
6.723 x 1073 where “c0” is understood to mean the total trapping period, which
ended when no more flies were captured. Note that A(t) < 1 means that flies released
at the trap were not necessarily captured. There is even anecdotal evidence that
fruit flies may enter certain kinds of traps, fly around inside them and then.exit!
An interesting open question is what kind of movement models lead to functional
forms such as Eq. (31)? I will briefly discuss a model for these experiments at the
end of the next section.

The “Classical” Trapping Problem and Its Extensions

As a first model of a trapping consider an approach based on partial differentia]
equations or difference equations (Jansen and Metz, 1979; Mangel, 1986_). Although
this method usually turns out to be computationally impracticable, it is a good
starting point. The experimental region is represented by a square of length L and
the trap is located at the center of the square. Associated with the trap is a “trap
radius” r, with the property that if distance between the pest and the center of t.he
square is less than r,, then the pest is trapped. We can define a probability density
for an untrapped pest as follows:

S(x,y,t)dx dy = Pr{at time ¢ the pest is in the small area dx dy around
the point (x, y) and is not trapped} . (32

The equation that f(x, y, t) satisfies is determined by the movement mo@el. Two
models are the diffusion model and the large deviation model of motion. The
biological assumption behind the diffusion model is that in a small iqteryal qftime
the pests are likely to move, but only a short distance. The @stnbptmn of
displacement in a short interval of time At is assumed to be Gaussian with mean
displacement 0 + o(At) and variance DAt + o(A4t). In this case, the the equation
that f(x, y, £) satisfies is

0.f =(D/{01f + 07 f} (33)

where 0, f denotes the partial derivative of f(x,y,t) with respect to the itl} variable,
0} f denotes the second partial derivative and D is the diffusion coefficient.



" Marc Manige

An alternative to the diffusion model (in which the movement is implicitly small
scale) is a large deviation model. The assumption here is that it is possible for the
pest to make a large movement in a short interval of time. We thus explicitly
specify the size and the probability of a displacement. In this case, the appropriate
equation for f(x, y,t) is (e.g. Knessl et al., 1984)

flxy,0)= ZZf(x —& Y=t —Aple,elx — g,y — &) 34)

where p(u, v]x, y) is the probability of taking a jump of size (u,v) from the point
(%, y), (&;,€;) is the size of the jump taken and the summation extends over all points
in the region of interest. Although they may appear formidable, Eq. (33) and (34)
are easily derived. Consider, for example, Eq. (34). We ask: what is the probability
that a pest is around the point (x, y) at time £? The answer is this: to get to (x, y)
at time ¢, the pest could have been at some point (u,v) at time ¢ — At and taken a
jump (x —u, y —v) in the interval Ar. Summing over all possible u and v gives
Eq. (34). Equation (33) can then be derived by a Taylor expansion of Eq. (34),
assuming that only small jumps occur. The reader is encouraged to try such an
expansion. :

In order to solve Egs. (33) or (34) initial and boundary conditions are needed.
If the pest is uniformly distributed in the region when =0, the appropriate initial
condition is f(x,y,0) = 1/(L? — nr?). Since the pest is trapped upon entering the
trap radius, one boundary condition is f(x,y,t)=0 when x?+ y*=r2. The
boundary condition at the edges of the square is more difficult. If there is a single
trap, then the only other condition that can be reasonably applied is that f(x, y, r)
is bounded for x, y — oo. Alternately, we might assume that if the pest leaves the
square under consideration, it enters another square of size L with a trap at the
center. In such a case, a reflecting condition is appropriate; that is, the normal
derivative of f(x, y,t) vanishes on the boundary of the square.

The geometry of this problem, a square region with a circular internal boundary,
makes it extremely difficult to solve. As an approximation, one can replace the
square by a circle of radius R. There are at least three good choices for R: one
can inscribe the square of side L in a circle of radius R, circumscribe the square
in a circle of radius R, or choose R so that areas are equal. Each of these has an
operational interpretation which is left to the reader as an exercise.

If we choose to ase an exterior boundary that is a circle, it is natural to switch

. to polar coordinates. Then, for example, S, y,8) = f(r, 1) (assuming radial symmetry)

and the full problem associated with Eq. (33) is

0 f = D(1/r)0,(rd, f)
f(rnt)=0; arflr=R=
Fir.0)= {1/(7t(R2 —r2)) ifr>r, .

35
0 otherwise (35)

The solution of this problem, and numerous variants of it, can be looked up in
Chapter 13 of Carslaw and Jaeger (1959).

As appealing as this approach may be, there are a number of difficulties- with
the classical trapping problem. Some of the most important ones are:
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o Imperfect trapping: In most operational situations, it is likely that pests are not
always trapped when they enter a trap, but the classical procedure assumes
perfect trapping.

» Nonconstant coefficients: The classical model assumes that the diffusion coefficient
(and drift coefficient, if there is one) are constant over space and time. This is
likely not to be the case.

o Intercell movement: The classical model assumes that a pest in cell i can not be
trapped by a trap in cell j. This assumption will often be violated in real trapping
programs because pests can move freely across boundaries of cells and may be
attracted from one cell to another by the presence of distant traps.

There are ways to incorporate these ideas into the classical trapping problem.
For example, define

¥(x, y,z)dt = Pr{pest is trapped by one of N traps during the interval
(t,t + dr)|at time t the pest is located at (x, y)
and the vector of trap locations is z} . (36)

The vector of trap locations is understood in the following way:
the vector z = (Zx15 24152425 2325 - - . Zon, Z,y) Where (241> 2,1)

is the center of the ith trap. Two models for the trapping function are the following;
P(x,5,2) =3 6(x ~ 2,,)8(y — z,)a; (37a)

where a; <1 is a trapping coefficient (with equality corresponding to perfect
trapping) and d(u) is the Dirac delta function. That is, trapping occurs with
probability a; if the pest enters the trap centered at (2xi» 25:)- A model similar to
this one has been analyzed by Szabo et al. (1984) for problems related to partial
trapping of random walks in chemical physics.

Another model for the trapping function is

¥ 0.2) =Y a,0q+ (x — z)* + (y — 2,)2]* (37b)

where a;,q;, and v are parameters. This model is chosen in analogy to certain
detection formulas from search theory (Koopman, 1980) but has not been applied
to problems in agricultural pest control.

With these trapping models, it can be shown (Mangel, 198 1) that the probability
density for the location of an untrapped pest now satisfies

0f =DEZf + 0, f)~ ¥(x, y,2)f (38)

with the same initial condition. This equation can sometimes be solved by
analytically, especially if we are willing to accept approximate techniques such as
asymptotic methods (Mangel, 1981). Otherwise, numerical methods are needed.
Rosenstock (1980), in a paper on problems of trapping chemical physics, gives
formulae for the mean time to trapping for a random distribution of traps on a
lattice. In particular, suppose that the pests execute some kind of random walk to
nearest neighbors on a lattice and assume that a fraction g, of the lattice points
are traps. Rosenstock shows that the mean time until trapping is well approximated
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by the value (1/ng,)(~log(nq,) + 1 — C) where C =0.577216 is Euler’s constant
(see Abramowitz and Stegun, 1965).

Any of these models might be employed to analyze trapping data, such as the
data developed by Cunningham and Couey. There are two main questions. First,
how do such data arise from particular motion models? Second, given such trapping
data, what should be done with the data? My colleague Richard Plant is currently
working on an extension of a diffusion model, as a means of modeling the
Cunningham and Couey data from “first principles”. The extension works as
follows. A pest located at the point (x, y) at time ¢ may do one of two things between
tand ¢+ Ar:i) It may make a displacement that is normally distributed with mean
0 and variance proportional to At. If it moves, there is a certain probability of
being trapped. ii) It may settle at the point (x, y) and stop moving. Plant assigns
a probability to each of the choices and then derives an extension of Eq. (33). This
model leads to a trapping curve similar to the one found by Cunningham and
Couey. The model, however, does not explain the origin of the “move/stay” decision.
Determining the behavioral origin of this decision is an interface of behavioral
ecology (Krebs and Davies (1984)) and applied ecology.

Next consider what is done with trapping data, once it is obtained. For example,
suppose that the probability that a pest is ultimately trapped given that initially
it is r units away from the trap is g(r) = Ae " ?" and that the trap center-to-center
distance is L miles, so that each trap is at the center of a square that is L miles

Table 1. Values of q, for varying R,

R, (miles) q, for
Entire trapping

One day period
0.01 0.48 0.55
0.02 0.36 044
0.03 0.28 0.35
0.04 0.21 0.29
0.05 0.17 0.23
0.06 0.13 0.19
0.07 0.11 0.16
0.08 0.086 0.13
0.09 0.071 0.11
0.10 0.059 0.096
0.20 0.016 0.027
0.30 0.007 0.012
0.40 0.0037 0.0066
0.50 0.0024 0.0043
0.60 0.0017 0.0030
0.70 0.0012 0.0022
0.80 0.00096 0.0017
0.90 0.00076 0.0013
1.00 0.00062 0.0011
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on a side. The probability g, that a pest located anywhere in this cell is trapped
is given by the average of g(r) over the cell, so that

qp = [[fAexp(—B(x? + y*)'?)dx dy/1?

where the region of integration is ~L<x<L, —L £y <L and the factor L? in
the denominator comes from dx dy/L? being the probability that a pest is located
in the small area dxdy. Although g, can be found numerically, an exact formula
can be computed by replacing the square by a circumscribed circle, and inscribed
circle, or a circle of equivalent area. Let R, denote the radius of the circle of
interest. Switching to polar coordinates and integrating by parts once gives the
result

4= QA/RI(1/B*){1 — e BR} — R, e~ 5Rx/B] .

Table 1 shows values of q, computed in this manner. This table gives an idea of
the efficacy of different trap spacings. It is useful for the analysis of information
in trapping.

Analysis of Information in Trapping

This section is concerned with how to best analyze trap catch data to obtain as
much information as possible (also see Plant and Wilson, 1985; Wilson et al., 1985).
Questions about the analysis of information naturally lead to a Bayesian framework
in which two related questions can be asked:

1) What can be said about population levels if there is no trap catch?

if) What can be said about population levels if there is a positive trap catch?
Although a minor modification of question ii) includes question i), it is operationally
useful to separate the two. The answers to these questions give information about
the level of the pest population. A third question relates the population level or
trap catch and the damage caused by the pest (e.g. Prokopy et al., 1982), but that
will not be treated here. My opinion is that the third question is still essentially
an experimental one.

Once again, consider a large region divided into cells in which the pest
population in the ith cell has a negative binomial distribution with parameters m
and k. In the analysis that follows, it is assumed that the overdispersion parameter
is known (for example by analogy with other trapping situations) and, for pedagogic
ease and simplicity, constant but that the mean m of the negative binomial
distribution is not known. The objective of the analysis is thus to use the trap data
to make statements about the possible values of m. (The analysis given here can
be used with minor modification for the case in which the overdispersion parameter
k = k(m) as well.) Assume that

g;= Pr{trapping a pest in the ith cell during the period
of interest|a pest is present} . (39)

The value of g; depends upon the number of traps in the cell, the efficacy of a
single trap, and the length of the trapping interval. In principle, the g; can be

2Ry
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computed from formulas such as Eq. (31). If the mean of the NB distribution takes
the value m = m, the trap distribution itself is negative binomial with parameters
g;m and k. That is, the overdispersion parameter is the same, but the mean of the
trapping distribution is the mean of the pest distribution times the probability of
trapping. (This result can be verified most easily by noting that the trap distribution
is obtained by compounding a binomial distribution with parameters N, g; with
a negative binomial distribution with parameters m, k. Use of generating functions,
or simply slogging through the resulting summations, leads to the stated result.)

The probability of no trap catch in the ith cell during the interval of interest
is thus

Pr{no catch in the ith cell} = {k/(k + g;m)}* . (40)

If the region of interest is divided into a total of C cells and we treat the trap
catches in different cells as independent random variables, the likelihood of no
trap catch in any of the cells is

C
Le(my= [ {k/lk +qm)}* . (41)

i=1
If all cells have the same trapping probability q; = q for all , the likelihood becomes
& c(m) = {k/(k + qm)} . (42)

The objective of a Bayesian analysis of the trapping information is the computation
of the posterior density f,(m|0) for the mean of the negative binomial distribution,
given no trap catch. Using Bayes’s theorem gives

f,(m|0)dm = Pr{m < m < m+ dm|no catch}
B Pr{m <m < m+ dm, no catch}
B Pr{no catch}
= fo(m)dmZ c(m)/[ fo(m)L c(m)dm (43)
where f,(m) is the prior density for the value of m. It is used to summarize prior

information about the value of the mean. For a situation in which there is little
prior information, two reasonable choices are the uniform prior in which

Sfo(m)=1 for all values of 0

and the noninformative prior in which
Solm)=[m(k +m)]~"/2.

The uniform prior attributes equal prior weight to all values of m. The noninformative
prior (DeGroot 1970, Martz and Waller 1982) gives more prior weight to small
values of m. The non-informative prior is chosen, roughly, so that the data change
only the position but not the shape of the posterior distribution. Neither of these
is integrable on the interval (0, c0] and are thus called improper prior densities. It
will be seen, however, that the posterior density given by Eq. (43) will be integrable.

Often, the posterior density itself is not of interest. Instead the interesting
quantity is the probability that the mean m is less than a threshold for action m,
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(which s, at this point, assumed to be given exogenously). The appropriate posterior
probability is

Pr{m <my|no trap catch } = ";)'Tfo(m)gc(m)dm/ Zfo(m)jt’c(m)dm . (44)

When the uniform prior is used, the integrals can be done exactly, giving
Pr{m <mz|no trap catch} =1 — [k/(k + gmy)]<-t, (45)

When the non-informative prior is used, the resulting integrals can be easily done
numerically; a trigonometric substitution to convert the denominator to a finite
domain integral. Table 2 shows the results of computations using this approach,
for the uniform prior. A table such as this one allows us to interpret the trap catch.

The Bayesian approach is especially well suited for sequential decision problems .

in which traps are periodically inspected. For such sequential problems, the
posterior density from period ¢ becomes the prior density in period ¢ + 1.

An alternative approach is based on likelihood arguments (Edwards 1972). In
the absence of trap catch, the likelihood Zc(m) takes its maximum value when
m=0 and is a monotonically decreasing function of m. Although the maximum
likelihood value of m is 0, we can construct confidence intervals directly
from the likelihood function. Hudson (1971) provides an approximate method
for doing this. The method consists of considering an interval of the form

Table 2. Probability that m < 1 for the uniform prior with k =2
and no trap catch

Number of Prob {m < 1} for a trap spacing of
traps
: 1 mile 0.5 mile 0.3 mile

10 0.010 0.040 0.107
20 0.023 0.080 0.208
30 0.032 0.119 0.297
40 0.043 0.156 0.377
50 0.053 0.192 0.447
60 0.063 0.226 0.510
70 0.074 0.258 0.545
80 0.084 0.289 0.614
90 0.094 0319 0.657
100 0.104 0.348 0.696
200 0.197 0.576 0.908
300 0.281 0.724 0972
400 0.356 0.820 0.992
500 0423 0.883 0.997
600 0483 0.924 0.999
700 0.537 0.950 ~1*
800 0.585 0.968 ~1
900 0.628 0.979 ~1
1000 0.667 0.986 ~1

*Here ~ 1 denotes values that exceed 0.9995
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Table 3. Likelihood # (1) for different values of C (number of

cells)

Trap Spacing £L1) for

(miles) C=10 Cc=100 C = 1000
1 0.995 0.946 0.577

0.5 0.979 0.807 0.117

0.1 0.626 0.009 ~0

{m: & o(m) 2 e &L (1)} where 1 is the MLE and f is a parameter. Under relatively
general conditions, Hudson shows that the choice 8 = 2 leads to likelihood intervals
that are approximate 95% confidence intervals. For the situation of no trap catch,
the MLE is M1 =0 with likelihood 1 so that the confidence interval is simply
{m: % :(m) 2 e *} and Hudson’s method is easily applied. Table 3 shows likelihoods
for various values of C and trap spacing.

Analysis of Information When There Is Trap Catch

Next consider the situation in which there is trap catch. The trap data can take
two forms:

1) Presence-absence data. The trap information in this case is that C, of the
traps had pests (positive counts)and C, = C — C, of the traps had no pests (negative
counts). Kuno (1969) and Plant and Wilson (1985) discuss methods for presence—
absence sampling that differ from the ones discussed here.

ii) Actual counts. In this case, the data consist of the actual trap counts, denoted
by X; which is the number of pests trapped in the ith cell.

The kinds of questions that we want to answer concern the information provided
by the trapping (e.g., what can be said about the value of the mean m of the NB
distribution) and what kind of action should be taken, given the information
provided by the trapping.

The answers to these questions can be built up in a manner analogous to the
methods used in the previous section. For simplicity of presentation, the case in
which all g; = g will be the only one considered here. Extensions to differing g; are
relatively straightforward, but also are problem dependent.

For the case of presence-absence sampling, the likelihood function depends
upon the value of ¢,m,C,, and C,. It is given by

£ (m, Cp, C,)=[k/(k + qm)1“*[1 — (k/(k + qm)y] . (46)

The maximum likelihood estimate (MLE) for m is found by differentiating Eq. (46)
with respect to m, setting the derivative equal to 0 and solving. This gives the MLE

= (k/g) [(1+(C,/C,))¥" —1]. 47

Although appealing for its simplicity, the MLE given in Eq. (47) can be highly
biased, in the sense that E(?) may deviate considerably from the true value of the
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m that generates the data. Mangel and Smith (1989) describe ways of eliminating
the bias in the MLE .

A second approach is to consider the likelihood ratio R(mr, m) defined as the
ratio of the likelihood of the threshold value of m to the MLE value of m. This
ratio is easily computed. It suffers the same drawback as the MLE procedure itself
in that using the MLE it may be very misleading,

A third approach is to use a Bayesian procedure and derive a posterior
distribution analagous to Eq. (43) using the likelihood function (46). This approach
does not suffer from the biased nature of the MLE and also provides a very natural
way for incorporating additional information.

For the situation in which actual trap counts are used, consider the question
of estimating the population mean in a single cell. This is justified if the cells are
assumed to be relatively large and thus trap counts in cells may be viewed as
independent variables. The objective is then to estimate m; (ie., the value of the
NB mean in the ith cell) and from this mean compute the distribution of the
population vector {N,}. Again for pedagogic ease, only one cell is considered, so
that the subscripts can be dropped. Then the datum is that X pests were trapped
in the cell, and we want to find the mean of the NB distribution that generates
the trap catch in the cell. The NB distribution (21) can be reinterpreted as the
likelihood #(m|x, q) that the mean m takes the value m, conditioned on the data
that x pests were trapped when the trapping probability for a single pest is q.

Table 4. Likelihood of values of m relative to the
MLE value when 6 flies are trapped with trap
spacing 1 mile

m Relative likelihood
500 5.56 x 10~3
1500 0.230
2500 0.600
3500 0.853
4500 0.972
5500 0.999
6500 0978
7500 0.931
8500 0.872
9500 0.811
10500 0.752
11500 0.694
12500 0.642
13500 0.593
14500 0.549
15500 0.510
16500 0473
17500 0.440
18500 0410
19500 0.383
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Ignoring all of the terms in (21) that are independent of the value of m gives
£ (m|x, g)oc (k + gm)~*[gm/(k + qm)]* . (48)

The MLE for m is it = x/q, a very natural result. Since the data X have a NB
distribution, the MLE 1 will also have a NB distribution. Bayesian methods using
the likelihood (48) or general likelihood argument can now be applied to find the
distribution of .

Thelikelihood function (48) is nearly flat for operational values of the parameters.
For example, if 4=0.0011 (corresponding roughly the 1trap/2.6km? from the
Cunningham and Couey curve), k =2, and x = 6 flies trapped, then the MLE for
m is = 5455, but values of m in the range [2000, 16,000] are roughly half as
likely as the MLE value (Table 4 shows the likelihood ratio over a wide range of
values of m.) This suggests that we should be wary about reporting point estimates
to decision makers without confidence that the point estimate is very accurate. It
is almost always better to report reasonable ranges for the values of the parameters
of interest and let the decision makers determine how to use the information. To
do otherwise is often recipe for double disaster. First, the decision maker may end
up with a tremendous error because he or she did not consider the range of
eventualities that could arise from the decision. (For example, the point estimate
may indicate that the pest population is low and the decision is made accordingly
when in fact the population is high—only a few pests were detected—with obvious
consequences.) Second, the analyst loses credibility with the decision maker; this
is often an irreplaceable loss.

Mangel et al. (1984) bring all of these ideas together in a study of the delimiting

of pest infestations, with particular application to the medfly problem in California
in the early 1980s.

Area Effects in Resistance Management and
Sterile Insect Methods

In this section, two problems associated with area wide control of pests are
considered. The first problem is the simultaneous management of resistance to
pesticide and optimization of crop yield. In this case, the question is whether to
treat only the region containing the crop with pesticide, or the entire region. The
second problem concerns the effects of either incorrectly assessing the extent of a

pest infestation or of external sources of pests when trying to control through the
sterile insect method.

Managing Pesticide Resistance

The general difficulty in the management of pesticide resistance is the mixture of
a renewable and non-renewable resource system. The crops are a renewable
resource, however, susceptibility to pesticide is fundamentally an exhaustible
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resource since each time a crop is sprayed and insects are killed, some genetic
selection for resistance occurs and thus some of the susceptibility to the pesticide
is lost. The literature associated with management of pesticide resistance is
considerable (e.g., Comins, 1977; Feder, 1979; Feder and Regev, 1975; Hall and
Norgaard, 1973; Heuth and Regev, 1974; Kable and Jeffrey, 1980; Knipling, 1984;
Lewis, 1981; May and Dobson, 1986; Moffitt and Farnsworth, 1981; Omer et al.,
1980; Plapp et al., 1979 and Sawicki et al., 1978, 1980) and will not be reviewed
here. Instead the basic scientific information needed for formulation of a simple
model will be discussed and then the model developed.

In order to deal with the management of pesticide resistance, we must be
consider some aspects of population genetics. In many cases we can use single
locus, two allele models to describe resistance (e.g. Omer et al., 1980). The two
alleles are the resistance allele (R) and the susceptible allele (r); three types of pests
are homozygous resistant (RR) individuals, heterozygous (Rr) individuals, and
homozygous susceptible (rr) individuals. Often, individuals with the susceptibility
allele will be more fit in the absence of spraying. For example, growth rates and
fecundity of Rr or rr individuals may be higher than those of RR individuals. On
the other hand, the RR individuals will have a higher fitness when pesticide is
applied, in the sense that for the same dose of pesticide fewer RR individuals are
killed than Rr or rr individuals. If k,(d) denotes the fraction of type i individuals
killed at pesticide level d (usually measured in parts per million, ppm, of pesticide)
then kpg(d) < kg, (d) < k,.(d) for virtually all doses. In general, for i fixed the k,(d)
curves are sigmoidal functions of d, rising from 0% towards 100% as d increases.
The percent kill is usually measured in a scale called probits in which 5 probits
are 509 kill and 5 + x probits is 50% + x-standard deviations of a normal O, 1
random variable. For example, 6 probits is about 85% kill and 7 probits is about
97.5% kill.

In a population that is well mixed and at equilibrium, the evolution of the
frequency of the alleles can be described by the Hardy-Weinberg formula (e.g.
Emlen, 1984 or Roughgarden, 1979) which states that RR:Rr:rr = p*:2p(1 — p):
(1 — p)* where p is the frequency of the R allele. If p(n) is the frequency of the R
allele in generation n, then p(n) satisfies the difference equation (Comins, 1977)

p(n+ 1) = [Sggrp(n)* + Sg,p(0)(1 — p(n)))/ & (49)
where
& = Spgp(n)> + 2Sg, p(n)(1 — p(n)) + S, (1 — p(n))? (50)

and §;; is the survivorship probability of an individual of genotype ij in generation
n. Perhaps the most important aspect of the dynamics in Eq. (49) is that if p(n) is
small, then

p(n + 1) = (Sx,/S,,)p(n) + o(p(n)) (1)

so that there is exponential growth or decay of resistance for small levels of
resistance and the rate of growth or decay just depends upon relative survivorships.
Omer et al. (1980) give firm evidence that the growth of resistance to a pesticide
is a phenomenon that can be very well described by the simple dynamics just
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described. May and Dobson (1986) analyze the rate of evolution of pesticide
resistance and use an equation analogous to (51) to explain the relative constancy
of the number of generations taken for a significant development of resistance.

The specific question of interest here is the role of refugia. That is, suppose
that there are two regions. One of them (called the field) has crops in it and the
other (called the pool) has natural vegetation that supports the pest. Suppose that
the pest immigrates from the pool to the field. The question is: Do we treat both
regions (area wide control) or just the region containing the crop. The answer must
be determined by the pay-off in terms of crop yield:

Approach Crop yield Resistance
Area wide Increase Presumably increases
Crop only May decrease ?

The role of analysis is to help develop methods that can be used to assess this
trade-off. The following model is a variant of work done by Mangel and Plant
(1983), Plant et al. (1985) and Stefanou et al. (1985). Imagine that the season is
broken into descrete time periods, with ¢ = 1 denoting the start of the season and
t =T denoting the end of the season. The crop dynamics are assumed to be

Cle+ 1,j)=C(t, jyre(1 — A@))
C(Lj)=Co (52)

where C,, is the initial crop biomass, C{(z,)) is the biomass of the crop at the start
of period t in year j, r_ is the intrinsic growth rate of the crop of A(z) is the damage

to the crop in period ¢ caused by the pest. A simple model of this damage function
might be

AR =1 —exp(—y(O[Xgo (1) + Xg, (1) + X, (0)]) (53)

where y(t) is a measure of the damage that the individual pest can cause during
period t and X ;(¢) is the number of pests of genotype ij at the start of period t.

The astute reader will recognize that a number of implicit assumptions have
been made in Egs. (51)-(53). For example:

» No density dependence for the crop: In the absence of pests, the crop is assumed
to grow expontentially throughout the season. This assumption is easily modified.

o All pests do the same damage. The damage function in Eq. (53) ignores all age
structure (pests of different ages might have different levels of damage) and other
complications of the pest population dynamics.

In a model of a particular pest-crop system, these assumptions would need
careful study and validation. For a qualitative understanding of the problem,
however, another assumption is helpful. Assume that there are only two types of
pests: resistants (R) and susceptibles (S) (Mangel and Plant, 1983). Let R r(t,j) and
S,(t,j) denote the population level of resistant and susceptible pests in the field at
the start of period ¢ in year j and let R »(t,)) and S, (t, j) denote the population levels
in the pool. Assume that, as long as there is no spraying, the field provides a better

llm

ha
w

I
of
frc
fra
of

wh
15 1

A

col
ex:
ab
Th
be

car
yei

wh
fac
yea



Marc Mangel ...«

‘on of pesticide
:ative constancy
of resistance.

‘hat is, suppose
ps in it and the
st. Suppose that
0 we treat both
he answer must

1 to assess this
agel and Plant
t the season is
the season and
med to be

(52)

op at the start
is the damage
mage function

(33)

. cause during
t of period t.
'mptions have

op is assumed
1sily modified.
mores all age
:ge) and other

s would need
the problem,
two types of
3t R,(¢,j) and
in the field at
ulation levels
vides a better

Information’and Atea-Wid Control in Agricultural Ecology il 107

T

e 2

habitat for growth of the pest so that pests migrate from the pool to the field. Let
u(j) denote the fraction of resistant pests in the pool at the start of year j and let
I(r) denote the immigration to the field during period ¢. Assuming that the migration
of the pests is independent of their resistance type, the number of pests moving
from pool to field during period ¢ is I(t) = i(O)(R,(¢, ) + S,(t, /) where i(f) is the
fraction of pests moving in period t. The dynamics within a year, in the absence
of spraying thus become

Rp(t+1,7) = g Ry(t,1) + p(j)I(z)

Splt+ 1) = AsS (6, ) + (1 — u(NI()

Ryt +1,)) = max [yAr R, (2, /) — u(j)I (1), 0]

Sp(t +1,j) = max [yAsS,(t, j) — (1 — u(j)(2),0] . (54)

In these equations, it is understood that 4, < A so that in the absence of spraying
susceptible pests grow faster than resistant pests and that y <1, so that the field
is a superior habitat for the pests. The initial condition when solving Eq. (54)
connects one year to the next. Assume that at the end of the growing season
(period T) the crop is harvested and the pests in the field and pool mix. Let
R(T,j)=R4(T,j) + R,(T, j) denote the total population of resistant pests in period
T in year j and let S(T, j) denote the total population of susceptible pests in period
T in year j. Assuming that the pests can only overwinter and breed in the pool,
the initial conditions for Eq. (54) become

Rf(l’j) = S_f(la]) =0
R,(L,j)=ro(R(T,j— 1))
Sp(L,)=50(S(T,j — 1)) (55)

where r,(z) and s,(z) are fecundity functions. The other connection between years
i1s through the fraction of resistant pests, u(j). That is

10+ 1) =ro(R,(T, N/Iro(Ry(T, j)) + 5o(S,(T, j))] . (56)

A spray schedule corresponds, in this model, to a sequence U(j)={U,,U,,...,
Ur-y;j} where U, is the spray level applied in period i in year j. From it, we
compute the fraction of resistant and susceptible pests killed in period i. Thus, for
example, if S,(t) were the susceptible population at the start of period t in the

absence of spraying, after spray is applied the population level will be S +(Oks(U)).

The crop dynamics are still given by Eq. (52) and the damage function can still
be modelled by Eq. (53), with an appropriate modification. All of these equations
can now be combined to study the efficacy of different spraying strategies over
years. To do this, define a crop-value function

V= _f 8-1C(T,)) (57)

where H is the time horizon over which planning is done and § < 1isa “discounting”
factor that weights future crop yields. Note that if & = 1, then the crop yield in
year H is as important as the yield in year 1.

The value function ¥ depends upon many parameters in the model and upon
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the control strategy U. A good way to view it, however, is that the underlying

state variable in the model is u(j). That is, the relatively complicated dynamics
in Egs. (54) and following are used to relate u(j) and p(j + 1). Holding all para-
meters constant, including the spray strategy U, allows us to formally write
u(j + 1) = F(u(j)), where F(-) is determined through the dynamics of the pest. The
appropriate initial condition is now that p(1) = y,, assumed to be given. The value
function can be determined in an iterative fashion (this is essentially the method
of deterministic dynamic programming, without the optimization step). Let
V(x, y; U) denote the crop value function from year y to year H, given that uy)=x
and that spraying strategy U is applied. First note that V(x, y; U) satisfies the end
condition that

Vix,H;U)=864"1C(T, H). (58)

Second, note that for values of y < H, we can determine V(x,y; U) iteratively.
That is,

Vix, y; U)=8"'C(T, ) + V(F(x),y + 1 U) . (59)

By iterating these equations backwards, we can study the value associated with a
given spraying strategy.

The final step, which will not be taken here, would be to optimize over the
spraying strategies (e.g. Plant, Mangel and Flynn, 1985). It is often better, however,
to report the resuits of a broad range of strategies, than to simply report the
“optimal” strategy. This is particularly true in a problem such as the one just
described, since so many assumptions are used in the model. The importance of
reporting ranges of options, and not just single “best” strategies, is as important
here as it is in the estimation of pest populations.

Area-Wide Effects in the Sterile Insect Method

The basic idea of the sterile insect method (SIM) can be traced to a paper by E.F.
Knipling (1955). In this section, area-wide effects associated with the SIM will be
discussed; there are many other interesting topics that will not be discussed (e.g.
Barclay (1980, 1982, 1987a,b), Barclay and MacKauer (1980), Berryman (1967),
International Atomic Energy Agency (1984), Ito (1977), Ito and Kawamoto (1979),
Ito and Koyama (1982), and Plant (1986)).

The basic idea of the SIM is to “dilute” the reproductive potential of a
population by adding sterile insects, typically males, to the population. The method
is most effective for insects which mate only once in their lives; if a sufficient number
of sterile males is used, many females will mate with steriles and thus produce no
offspring. If the population has a 1:1 sex ratio, then it is sufficient to track females
only. Let F(n) denote the number of females in generation n. If the population has
non-overlapping generations and grows exponentially, in the absence of sterile
males the dynamics of F(n) are

F(n+1)=rF(n) (60)
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where r is the intrinsic growth rate of the population. The idea is to add sterile
males to the population, until r < 1. In particular, if S(n) denotes the number of
sterile males released in generation n, the dynamics in Eq. (60) are replaced by

F(n+ 1) =r[F(n)/(F(n) + S(n))]F(n) (61)

where the first two terms on the right hand side now represent the effective growth
rate in the presence of sterile insects. Plant (1986) discusses more realistic models
for the pest dynamics and SIM; the models used here, such as Eq. (61) are chosen
mainly for pedagogic purposes.

The dynamical properties of Eq. (61) can be studied through its fixed points.
Consider the case in which a constant number of sterile insects, S(n) = S, is released
in each generation. The fixed point F of Eq. (61) satisfies

F=rF?/(F + ) (62)
so that there is a fixed point at F = 0 (not very surprising) and another fixed point at
F,=S/(r-—1). (63)

It is easy to demonstrate that the fixed point F, is unstable in the sense that if the
initial population F(0) < F, then F(n) decreases towards 0 whereas if the initial
population F(0) > F,, the population grows without bound. (Recall the original
dynamics are exponential growth and that a constant number of sterile insects are
being released in each generation.) We now flip Eq. (63) around, to determine the
minimum number of steriles that must be released S, to have the population
decrease from one generation to the next. This is called the threshold release level
and is given by

S,=Fn)(r—1) (64)
with the property that

. <F(n) ifSn)>S§,
Fn+1)=F(n) ifSn)=S§,
>F(n) if Sm)<S,. _ (65)

Another way of interpreting Eq. (65) is that F(n)— 0 if S(n) exceeds the threshold
S; in each generation, F(n) stays constant if S(n) equals the threshold S, and F(n)
grows if S(n) is less than the threshold. Typical dynamics for the case of a constant,
sufficiently large number of releases are that F (n) decreases very slowly at first, but
then the decrease in F(n) accelerates with n (see Plant and Mangel 1987 for more
details).

The value of F(n) is thus extremely important in actual implementation of the
SIM. In general, F(n) will be determined by trapping, so that the first section of
this chapter and this section are tied together through the operations of detection
and control.

If the SIM is applied in a large region, it may again be worthwhile to divide
the region into cells. Then let F,(n) denote the number of females in the ith cell at
the start of generation n. Assume that the areas are sufficiently large to be treated
independently and that the insects reproduce and then disperse. Let G,(n) denote
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the ﬁbpulatibn .le\-/rel‘ in the ith cell after reproduction but before dispersal. If Si(n)

steriles are placed in the ith cell during generation n, then
Giln) = rFy(n)*/[F;(n) + S:(n)] . (66)
The population in the ith cell at the start of generation n + 1 is then

Fi(n+1)= #(G(n) (67)

where G(n) is the vector (G1(n), G,(n),...,Ge(n)) and F(z) is the model for
movement. The total population at the start of generation n is then Fp(n) =3 F (n),
with the summation extending over all cells. In most SIM control programs, the
total number of sterile insects available for use is limited. This adds one additional
constraint that ¥ S;(n) < St(n), where Sr(n) is the total number of sterile insects
available in generation n. A relatively complex stochastic optimization problem
arises in a natural fashiong: Minimize E{F;(H)} through choices of {S:(n)} where
H is the time horizon. The problem is stochastic because of imperfect information
obtained through trapping. In the real application of SIM, producing sterile insects
may also be a major difficulty (see, e.g. Plant, 1986) especially for pests with low
individual fecundity such as the tsetse fly.

Prout (1978) developed a number of elaborations of the SIM. Two of the most
important are i) the SIM in populations with a carrying capacity and ii) the SIM
when there is migration into the region being treated (that is, non-area wide
treatment). In Prout’s model with a carrying capacity, Eq. (60) is replaced by

Fin+ 1)=F){rK/(K +(r — 1)F(n))} . (68)

The carrying capacity in this model is F (n) = K. If a fixed number of steriles S are

released in each generation (Prout calls this “hard” release), then the dynamics are
replaced by

Fln+ 1) = F){F(m/F(n) + $)} [rK/{K + (r — DE®)F(n)/(F(n) + $)}1

=rKF(n)?/[K(F(n) + S) + (r—1)F(n)?]. (69)
The fixed points F of this equation now satisfy the cubic equation
(r—1F*—K(r—1)F2 4+ KSF=0. (70)

Note that F =0 is always a solution of this equation. It is the only real solution

aslongas K(r—1)<4S.If K (r—1)> 48, there are two additional, real solutions
of Eq. (70), with the middle root unstable.

Next, consider the effect of migration on the population with a carrying capacity.
That is, assume that pests move into the region being treated with the SIM. Let

M denote the number of migrants into the region in each generation. The dynamics
for F(n) then become

F(n+1)=rK[F(n)* + M(F(n) + S)I/[K(F(n) + S)
+(r = 1)(F(n)* + M(F(n) + S)] (71)

and the fixed points of this equation satisfy

(r=DF°+(r— 1)(M — K)F? + {MS(r — 1) + K(S — MN}F=rKMS. (12)
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Note that F=0 is no longer a fixed point of the system. The operational
interpretation of this result is that when migration occurs, eradication can not be
achieved solely through use of the sterile insect method.

In order to analyze Eq. (72), it helps to introduce scaled variables, in which
the carrying capacity is used to nondimensionalize population levels. Set

x=F/K
m=M/K
s=S/K (73)

so that Eq. (72) becomes
Sxsmys)=(r—1)x* +(r— 1)(m—1)x? + {m(sr —s —r) + s} x = rms . (74)

The equilibria of the pest dynamics can now be determined by study of the
bifurcations of the cubic equation (74). The following properties are determined
(see Plant and Mangel, 1987, for more details):

1) When m=0 and s<s,=(r—1)/4, the equation f(x;0,s)=0 has three
solutions. One of them is the origin.

if) When m =0 and s> s, the only solution of f(x;0,5)=0is x =0 so that
eradication is possible.

iii) If s>, and m is slightly positive, the solution of Sf(x;m,s) =0 shifts from
the origin to a value of x > 0, so that eradication is not possible. As m increases,
two additional real roots of the equation appear, so that there is a region of multiple
steady states of the population. As m increases further, the only root of f(x;m,s) =0
is a large one. The reader is encouraged to work out the details and to see how
the bifurcations provide information about the population structure.

Conclusions

Hopefully, the reader has seen the wealth of interesting and challenging problems
that arise in agricultural pest control. In recent years, a number of books on the
subject of pest management have appeared (e.g, Huffaker and Rabb, 1984; Kogan,
1986; Conway, 1985; Curry and Feldman, 1987). The book of Curry and Feldman is
closest to this paper in spirit and approach; it provides a natural departure point for
continuing with the material presented here.

Different agricultural problems will require different, and often new, types of
mathematics. Even so, it is possible to provide a few general guidelines which will
help make the analysis and modelling as good as possible:

» Don’t be tied down by what’s been done before; think broadly and widely about
the problem.
« Be prepared for the unexpected (see Holling, 1987), since a model is always a

caricature of reality. It is easy to miss—especially on the first attempt— crucial
driving factors.

o Get as close to the problem as possible by spending considerable amounts of
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time with the biologists who know the pest and crop and the decision maker
who has the responsibility of choosing the action. Understand the biology of
pest and crop and the sociology of policy making and try to integrate these in
the analysis, as much as is possible. (Barrett, 1984).

« Build confidence. Often this is most easily done by listening and asking good
questions, rather than acting as if you've got all the answers. Another way is to
solve a “trivial” problem that is of interest to the people you're working with.,

» Be problem, not technique, oriented (Barrett, 1985). The objective of bringing
analysis to agricultural problems is to be able to solve agricultural problems,
not to find problems which fit a particular mathematical technique. Trying to

force a problem into the form so that a favorite technique can be used is often
recipe for disaster.
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